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Abstract
A theoretical approach based on a tight-binding model is developed for studying the effects of
finite concentration gas adsorption (for what are known as diatomic, triatomic and quadratomic
gas molecules in the general forms denoted by XY, XY2 and XY3, respectively) on electronic
properties of armchair graphene nanoribbons (AGNRs). To consider the edge effects on
electronic properties of pure AGNRs for the first time, two hopping parameters, for
hydrogen–carbon and carbon–carbon nearest neighbor hopping, are considered. We found, for
some specified values of hopping integrals and random on-site energies, that adsorbed molecule
AGNRs act as donors or acceptors, which is consistent with reported experimental results for
CO, NO2, O2, N2, CO2 and NH3 adsorption on graphene. Then by using these parameters and
the coherent potential approximation, we investigated the effect of finite concentration gas
molecule adsorption on the average density of states. Our results could be used to make p-type
or n-type semiconductors by means of finite concentration adsorption of gas molecules or a gas
sensor.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene is a single atomic layer of graphite with a
honeycomb crystal structure and has prompted a great number
of research activities [1], such as structural property, electrical
conductance and quantum Hall effect investigations directed
towards making novel nanoelectronic devices [2–4]. Another
type of two-dimensional system known as the nanoribbon
has finite width but large length. For the graphene system,
such systems are known as graphene nanoribbons (GNRs).
GNRs have been studied extensively [5–11]. It is now
possible to make GNRs by various experimental methods,
such as tailoring via a scanning tunneling microscopy tip [12],
exfoliating from highly oriented pyrolytic graphite [3, 4, 13],
and graphitizating SiC wafers [14]. GNRs are classified
into two types, according to their edge configurations: either
armchair or zigzag. The electronic properties of hydrogen-
passivated and F-passivated AGNRs have been investigated
on the basis of a tight-binding model and first-principles

calculations [5, 6, 10, 15]. These earlier works have
shown that AGNRs are semiconductors and their energy
gap scales inversely with the ribbon width, and established
that these band gaps originate from quantum confinement.
These results agree well with calculated energy band gaps of
graphene nanoribbons [16]. In this experiment, temperature
dependent conductance measurements show that different
graphene nanoribbons with various widths are semiconductors
and that the energy gap depends strongly on the width of the
GNRs. Recently, a new generation of gas sensors have been
demonstrated, using graphene [17]. The sensing property is
based on changing resistivity due to molecules being adsorbed
on the graphene sheet that act as donors or acceptors; for
example NH3 and CO act as donors while H2O and NO2 act as
acceptors. In order to consider the feasibility of using AGNRs
as gas sensors, we investigated the effect of gas adsorption
on electronic properties of armchair graphene nanoribbons
(AGNRs). Since the gas molecules are adsorbed randomly
by the AGNR atoms, the Green function in the equation of
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motion is random and the local behavior could be different
from the whole system behavior; hence we should calculate
configurationally averaged properties. We approached this
using the coherent potential approximation formalism to take
the average over all possible adsorbed molecule configurations
where their probabilities are large enough (we can ignore
those configurations where the probabilities are very small,
such as configurations with probabilities less than c(1 −
c)15 where c is the concentration of adsorbed gas), and
investigated the effect of adsorption of some gas molecules
(what are known as diatomic, triatomic and quadratomic
gas molecules in the general forms denoted by XY, XY2

and XY3 respectively) on the electronic properties of H-
passivated AGNRs using a tight-binding approach and the
coherent potential approximation. To find exact values of
hopping integral deviations and random on-site energies in the
finite concentration gas adsorption calculations, for the case
of one-molecule adsorption, we varied the hopping integral
deviations and random on-site energies to obtain local densities
of states that are consistent with recent experimental results for
the graphene [17]. Then by using these parameters and the
coherent potential approximation formalism, we investigated
the effects for finite concentration gas adsorbed semiconductor
AGNRs.

The paper is organized as follows. Section 2 contains the
model and method of calculations. In section 3, firstly the edge
effects on the energy gaps of chemically modified armchair
graphene nanoribbons are investigated; then calculations
are done for one-molecule adsorption to obtain appropriate
hopping integral deviations and random on-site energies for use
in the finite concentration gas adsorption calculations. At the
end of this section, the local density of states is calculated for
different configurations for one-gas-molecule adsorption. In
section 4, we introduce the application of the coherent potential
approximation (CPA) formalism for our system, to find finite
gas adsorption configuration effects on AGNRs. Finally, the
last section contains the conclusions.

2. Model and formalism

We introduce our model for hydrogen edge terminated
armchair GNRs, as illustrated in figure 1. In the tight-
binding model the total wavefunction of the system is a linear
combination of the s orbitals of hydrogen atoms and pz orbitals
of carbon atoms, so the total wavefunction of the system can
be written as

|ψ〉p = CA

√
2

Nx (N + 1)

∑
xAi

N∑
i=1

eikx xAi sin

(
pπ

N + 1
i

)
|Ai〉

+ CB

√
2

Nx (N + 1)

∑
xAi

N∑
i=1

eikx xAi sin

(
pπ

N + 1
i

)
|Bi〉

(1)

where p = 1, 2, . . . , N and |Ai〉 and |Bi〉 are the
wavefunctions of the s orbitals of a hydrogen atom located in
the A and B sublattices, respectively, if i is equal to 1 or N ,
while they are the wavefunctions of the pz orbitals of a carbon

atom located in the A and B sublattices if i = 2, . . . , N − 1.
A simple case of this model without hydrogen termination is
used [10].

On the basis of the general random tight-binding model,
the Hamiltonian is [18]

H = −
∑
i jαβ

tαβi j cα†
i cβj +

∑
iα

(εαi − μ)n̂αi (2)

where α and β refer to A1,0, A1,1, A1,2, . . . , AN,1 and
AN,2 or B1,0, B1,1, B1,2, . . . , BN,1 and BN,2 subsites inside
the unit cell for diatomic gas (figure 1), A1,0, A1,1, A1,2,
A1,3, . . . , AN,2 and AN,3 or B1,0, B1,1, B1,2, B1,3, . . . , BN,2

and BN,3 subsites inside the unit cell for triatomic gas, and
A1,0, A1,1, A1,2, A1,3, A1,4, . . . , AN,3 and AN,4 or B1,0, B1,1,
B1,2, B1,3, B1,4, . . . , BN,3 and BN,4 subsites inside the unit cell
for quadratomic gas. Ai,0 and Bi,0 for i = 2, 3, . . . , N − 1
refer to carbons inside the unit cell and A1,0, B1,0, AN,0 and
BN,0 refer to H or F. N − 2 is the number of dimer lines across
the ribbon width, as shown in figure 1. We refer to an AGNR
with N dimer lines as an N-AGNR. cα†

i (cαi ) is the creation
(annihilation) operator for an electron on site α in the unit
cell i , and n̂αi = cα†

i cαi is the number operator. tαβi j are the
hopping integrals for hopping between the subsites α and β in
the Bravais lattice unit cells i and j , μ is the chemical potential
and εαi is the random on-site energy for subsite α in the Bravais
lattice unit cell i. The equation of motion for electrons with the
above Hamiltonian, equation (1), is

∑
l

((EI − εi I + μI)δil + til)G(l, j, E) = Iδi j (3)

where the random Green function matrix G(i, j, E) for a
diatomic gas adsorbed armchair GNR is

G(i, j, E)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G A1,0 A1,0 G A1,0 A1,1 G A1,0 A1,2 G A1,0 B1,0 G A1,0 B1,1

G A1,1 A1,0 G A1,1 A1,1 G A1,1 A1,2 G A1,1 B1,0 G A1,1 B1,1

G A1,2 A1,0 G A1,2 A1,1 G A1,2 A1,2 G A1,2 B1,0 G A1,2 B1,1

G B1,0 A1,0 G B1,0 A1,1 G B1,0 A1,2 G B1,0 B1,0 G B1,0 B1,1

G B1,1 A1,0 G B1,1 A1,1 G B1,1 A1,2 G B1,1 B1,0 G B1,1 B1,1

G B1,2 A1,0 G B1,2 A1,1 G B1,2 A1,2 G B1,2 B1,0 G B1,2 B1,1

G B2,0 A1,0 G B2,0 A1,1 G B2,0 A1,2 G B2,0 B1,0 G B2,0 B1,1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

G A1,0 B1,2 G A1,0 B2,0 · · · · · · · · ·
G A1,1 B1,2 G A1,1 B2,0 · · · · · · · · ·
G A1,2 B1,2 G A1,2 B2,0 · · · · · · · · ·
G B1,0 B1,2 G B1,0 B2,0 · · · · · · · · ·
G B1,1 B1,2 G B1,1 B2,0 · · · · · · · · ·
G B1,2 B1,2 G B1,2 B2,0 · · · · · · · · ·
G B2,0 B1,2 G B2,0 B2,0 · · · · · · · · ·

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)
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where, in the case of diatomic gas adsorbed 8-AGNRs,
the Green function matrix, G(i, j, E), and other matrices
are 60 × 60 matrices. The full random Green function
matrix, G(i, j, E), can be expanded in terms of the clean
system Green function matrix, G0(i, j, E), and a random
potential [18–20]:

G(i, j, E) = G0(i, j, E)+
∑
ll′

G0(i, l, E)Vll′ G(l ′, j, E) (5)

where the random potential matrix, Vll′ , is defined
by

Vll′ = εδll′ − δtll′ (6)

where δtll′ = tll′ − t0
ll′ are hopping integral deviations. The

mn component of the clean system Green function matrix,
G0(i, j, E), is given by

[G0(i, j, E)]mn = 2

Nx (N + 1)

×
∑
kx p

e+ikx xi j sin

(
pπ

N + 1
M

)
sin

(
pπ

N + 1
N

)

× [EI − εkx p + μI]−1
mn (7)

where the mn component of the band structure matrix,
[ε(kx p)]mn , is

[ε(kx p)]mn = − 2

Nx (N + 1)

∑
i j

e−ikx xi j sin

(
pπ

N + 1
M

)

× sin

(
pπ

N + 1
N

)
[t0

i j ]mn . (8)

Note that M and N are integers that for the case of a
diatomic gas adsorbed 8-armchair GNR are M = m−1

6 +
1 and N = n−1

6 + 1. It is reported that the bonding
distances between carbon atoms at the edge sites (a2 and
aN−1) are shorter than others in the middle of GNRs [6, 21].
Such effects have been observed in large aromatic molecules
such as ovalene (C32 H14) [22]. An analytic expression
for the TB matrix elements connecting carbon atoms [23]
shows that a decrease in the inter-atomic distance could
induce increasing in the hopping integral between π orbitals.
Using this, we consider the hopping integral deviation as
t A1,0 B1,0

〈i j〉 = t AN ,0 BN ,0

〈i j〉 = 0 while t A1,0 B2,0

〈i j〉 = t B1,0 A2,0

〈i j〉 =
t AN−1,0 BN ,0

〈i j〉 = t BN−1,0 AN ,0

〈i j〉 = t (1 + δ′), t A2,0 B2,0

〈i j〉 = t AN−1,0 BN−1,0

〈i j〉 =
t (1 + δ) and t

An,0 Bn′,0
〈i j〉 = t

Bn,0 An′,0
〈i j〉 = t for n and n′ =

3, . . . , N − 2. Also we allowed hopping integrals for
hopping to the nearest neighbors, with the others neglected,
so

t
An,0 Bn′,0
〈i j〉〈nn′〉 = t

Bn,0 An′,0
〈i j〉〈nn′〉 = t (9)

for n and n′ = 3, . . . , N − 2 where t = 2.7 eV is the
clean system nearest neighbor hopping integral in the middle of
AGNRs. In our calculation, we take μ = 0 which corresponds
to one electron per carbon atom. Hence the hopping integral
matrix is

t〈i j〉〈nn′〉 =

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 (1 + δ′) 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

(1 + δ′) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 (1 + δ′) 0 0 (1 + δ) 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 (1) 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·

(1 + δ′) 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·

(1 + δ) 0 0 (1) 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 (1) 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 (1) 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
(1) 0 0 (1) 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 0 · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

So, the dispersion relation is given by
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εkx p =

− t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 (1 + δ′)γ2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(1 + δ′)γ ∗
2 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 (1 + δ′)γ2 0 0 (1 + δ)γ ∗

3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 (1)γ ∗

4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 (1 + δ′)γ ∗

2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 (1 + δ)γ3 0 0 (1)γ4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 (1)γ4 0 0 (1)γ ∗

5 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 (1)γ ∗

4 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 (1)γ5 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·
0 0 0 0 · · · · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

where

γ2m(kx p) = 2

Nx (N + 1)
sin

(
mpπ

N + 1

)
sin

(
(m + 1)pπ

N + 1

)

× e−i (−1)m
√

3kx a
6 (12)

and

γ2m+1(kx p) = 2

Nx (N + 1)
sin

(
(m + 1)pπ

N + 1

)

× sin

(
(m + 1)pπ

N + 1

)
e−i (−1)m

√
3kx a

3 . (13)

For the case of one diatomic gas molecule adsorbed by a
B3,0 subsite, the hopping integral matrix deviation is given by

δt〈ll′ 〉 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 δ1 δ2 0 0
0 0 0 0 0 0 δ1 0 δ3 0 0
0 0 0 0 0 0 δ2 δ3 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

where the hopping deviation elements δ1, δ2 and δ3 are

δ1 = δt B2,0 B2,1

〈i j〉 = δt B2,1 B2,0

〈i j〉 (15)

4
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δ2 = δt B2,0 B2,2

〈i j〉 = δt B2,2 B2,0

〈i j〉 (16)

δ3 = δt B2,1 B2,2

〈i j〉 = δt B2,2 B2,1

〈i j〉 (17)

and the random on-site energy matrix is given by

εl =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ε1 0 0 0
0 0 0 0 0 0 0 0 ε2 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

where ε1 and ε2 are the differences between on-site energies of
the host carbon and adsorbed molecules. In the remainder of
this section, we limited ourselves to the case of one-molecule
adsorption. Gases of three types are considered: diatomic,
triatomic and quadratomic gas molecules. For the case of one-
molecule adsorption, if the molecule is adsorbed by one of the
subsites of site 0 in the Bravais lattice, the expansion of the
Green function matrix, G(i, j, E), in terms of the clean system
Green function matrix, G0(i, j, E), is

G(i, j, E) = G0(i, j, E)+ G0(i, 0, E)V00G(0, j, E). (19)

Figure 1. Schematic of an 8-AGNR. The red circles at the edges
denote hydrogen atoms; the black and gray circles represent carbon
atoms. The 1D unit cell is limited by two dashed lines and the ribbon
width is denoted by W .

Figure 2. The comparison of the local density of states of the A3,0

subsite of pure 8-AGNR for different values of δ′. We see that on
decreasing δ′, the energy gap decreases.

Equations (7) and (19) should be solved to obtain
the Green function matrix, G(i, j, E); hence the den-
sity of states could be obtained from N An,n An,n (E) =
− 1
π

Im G An,n An,n (i, i, E).

3. Results and discussion

In this section, our tasks are first to consider the effects of
chemical edge modifications on the electronic properties of
finite width 8-AGNRs, and second to find appropriate hopping
integral deviations and also on-site energies that are consistent
with experimental and DFT results. Also we consider the
configurational dependence of the local density of states of the
AGNR.
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Figure 3. The local densities of states for different subsites A2,0,
A3,0, A4,0, A5,0 across the ribbon width for δ = +0.15t and
δ′ = −0.25t . It is clear that the energy gaps are equal across the
ribbon width.

Figure 4. Comparison of the local densities of states for different
subsites A2,0, A3,0, A4,0, A5,0 across the ribbon width for δ = +0.15t
and δ′ = +0.25t .

We introduce the effect of geometric deformation in our
theoretical calculations via two parameters, δ and δ′. In
recently reported calculational work it is shown that the C–C
bond length at the edges of the ribbon decreases [6, 21] and
this decrease in inter-atomic distance induces a increase in the
hopping integral for hopping between π orbitals [23]. Now
by examining the different values of δ′ we show that we can
control the energy gap of the 8-AGNR, which corresponds to
controlling the energy gap of the 8-AGNR by using different
edge addends (H, F etc). Figure 2 shows the local density of
states of the B2,0 subsite for different values of δ′: (a) δ′ =
+0.25t , (b) δ′ = +0.0t , (c) δ′ = −0.15t and (d) δ′ = −0.25t .
We see that on decreasing δ′, the energy gap decreases. Also
we investigated the effects of the δ′ = −0.25t and δ′ = +0.25t
values of δ′ on the energy gaps of different dimers across the
ribbon width. Figure 3 shows for the δ′ = −0.25t value of
δ′ the energy gaps in the different dimers to be equal, but the
effects of zero and δ′ = +0.25t values of δ′ on the energy gaps
in the different dimers across the ribbon width are not same.
This result has been shown in figure 4. We found the negative
values of δ′ decreasing the energy gap while the positive values
of δ′ were slightly increasing the semiconducting energy gap.

Then we tuned the hopping integral deviations and
also on-site energies of the adsorbed gas molecules such
that the adsorbed molecule bound states locate inside the
semiconductor AGNR energy gap to produce an n-type or a p-

Figure 5. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states of the A3,0 subsite
of site 0, where a diatomic gas molecule is adsorbed and
δ′ = −0.25t . The hopping deviations and on-site energy are chosen
to be δ1 = +0.02t , δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0
respectively. In this case an n-type semiconductor 8-AGNR has been
produced.

Figure 6. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states for the A3,0

subsite of site 0, where a quadratomic gas molecule is adsorbed and
δ′ = −0.25t . The hopping deviations and on-site energy are chosen
to be δ1 = +0.015t , δ2 = +0.010t , δ3 = +0.0325t , δ4 = +0.014t ,
ε1 = −0.15t and ε2 = +0.008 respectively. In this case an n-type
semiconductor 8-AGNR has been produced.

type semiconductor AGNR. Figure 5 illustrates the comparison
of the local density of states of pure 8-AGNR at the A3,0 subsite
with respect to the local density of states at the A3,0 subsite of
the site 0, where A3,0 at the site 0 has adsorbed a diatomic gas
molecule. The hopping integral deviations and on-site energies
are chosen to be δ1 = +0.02t , δ2 = +0.035t , ε1 = −0.655t
and ε2 = +0.0 respectively.

Similar results were found for quadratomic gas molecule
adsorbed 8-AGNR (in the form denoted by XY3); in this
case the appropriate hopping integral deviations and on-site
energies are chosen to be δ1 = +0.015t , δ2 = +0.010t , δ3 =
+0.0325t , δ4 = +0.014t , ε1 = −0.15t and ε2 = +0.008t
respectively. This result is similar to the reported results based
on first-principles calculations for NH3 adsorption by AGNRs,
where gas molecule adsorbed AGNR behavior is that of an n-
type semiconductor. This result has been shown in figure 6.

Also we found that by choosing some other values of
hopping integral deviations and on-site energies an p-type
AGNR semiconductor could be produced. Figure 7 shows the

6
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8–AGNR

Figure 7. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states for the A3,0

subsite of site 0, where a diatomic gas molecule is adsorbed and
δ′ = −0.25t . The hopping deviations and on-site energies are chosen
to be δ1 = +0.03t , δ2 = +0.015t , δ3 = +0.055t , δ4 = +0.035t ,
ε1 = −0.3t and ε2 = +0.0135t , respectively. In this case, a p-type
semiconductor 8-AGNR has been produced.

comparison of the local density of states of pure 8-AGNR at
the A3,0 subsite with respect to the local density of states at the
A3,0 subsite in the site 0 where A3,0 in the site 0 adsorbed a
triatomic gas molecule. The hopping integral deviations and
on-site energies are chosen to be δ1 = +0.03t , δ2 = +0.015t ,
δ3 = +0.055t , δ4 = +0.035t , ε1 = −0.3t and ε2 = +0.0135t
respectively.

Now by using the hopping integral deviations and on-site
energies of the diatomic gas obtained, we show that the change
of δ′ has no effect on the behavior of the AGNR (as n-type or
p-type semiconductor). For this purpose we consider the effect
of adsorption of a diatomic gas on the local density of states
of the 8-AGNR for two different values of δ′: δ′ = −0.25t
and δ′ = +0.25t . Figure 8 illustrates the comparison of the
local density of states of pure 8-AGNR at the A3,0 subsite with
respect to the local density of states at the A3,0 subsite of the
site 0 where A3,0 at the site 0 adsorbed a diatomic gas molecule,
for (a) δ′ = −0.25t and (b) δ′ = +0.25t . The hopping integral
deviations and on-site energy are chosen to be δ1 = +0.02t ,
δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0 respectively.

To see that the local density of states depends on the
adsorbed molecule situation (configurational dependence), we
investigate the effect of gas adsorption on the local density of
states for the An,n subsite and its nearest neighbors when the
An,n subsite has adsorbed a diatomic gas molecule and repeat
this work in the cases where different An,n subsites across the
ribbon width of the 8-AGNR have adsorbed a diatomic gas
molecule. Figure 9 shows the comparison of the local density
of states of A2,0 and its nearest neighbors with respect to their
pure local density of states when the A2,0 subsite in the 0 site
has adsorbed a diatomic gas molecule. Results for the cases
where one of the A3,0, A4,0 or A5,0 subsites has adsorbed
a diatomic gas molecule have been shown in figures 10, 11
and 12 respectively. Comparing figures 9, 10, 11 and 12, we
conclude that the local density of states of a gas adsorbed 8-
AGNR is strongly configurational dependent. The hopping
deviations and on-site energies are chosen to be δ1 = +0.02t ,
δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0 respectively.

Figure 8. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states for the A3,0

subsite of site 0, where a diatomic gas molecule is adsorbed, for two
different values of δ′: (a) δ′ = −0.25t and (b) δ′ = +0.25t . The
hopping deviations and on-site energy are chosen to be δ1 = +0.02t ,
δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0, respectively. In this
case an n-type semiconductor 8-AGNR has been produced.

4. Finite concentration of gas molecule adsorption on
AGNRs

Since the gas molecules are randomly adsorbed by AGNR
atoms, the system is a disordered system. The exact solution
of the equation of motion of such a system is impossible,
so here we use the coherent potential approximation (CPA)
to solve the equation of motion, equation (3), to obtain the
average Green function matrix G(i, j, E). So, by using the
relation between the average Green function G(i, j, E) and
average density of states, we can investigate the effect of
finite concentration of diatomic, triatomic and quadratomic gas
molecule adsorption on the average density of states of an 8-
AGNR. First we introduce the CPA formalism for this system
and then we present our results. The Dyson equation for the
averaged Green function matrix, G(i, j, E), corresponding to
equation (3) is

G(i, j, E) = G0(i, j, E)

+
∑

ll′
G0(i, l, E)
(l, l ′, E)G(l ′, j, E) (20)

where the self-energy 
(l, l ′, E) is defined by

∑
l′

〈Vll′ Gimp(l ′, j, E)〉 =
∑

l′

(l, l ′, E)G(l ′, j, E). (21)

7
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Figure 9. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states of (a) A2,0,
(b) B2,0, (c) B3,0 subsites of site 0, where a diatomic gas molecule is
adsorbed by the A2,0 subsite of site 0 and δ′ = −0.25t . The hopping
deviations and on-site energies are chosen to be δ1 = +0.02t ,
δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0, respectively.

The Fourier transformation of G(i, j, E) in equation (20)
is given by

[G(i, j, E)]mn = 2

Nx (N + 1)

×
∑
kx p

e+ikx xi j sin

(
pπ

N + 1
M

)
sin

(
pπ

N + 1
N

)

× [EI − εkx p −
(kx , p, E)]−1
mn (22)

where

[
(i, j, E)]mn = 2

Nx (N + 1)

×
∑
kx p

e+ikx xi j sin

(
pπ

N + 1
M

)
sin

(
pπ

N + 1
N

)

× [
(kx, p, E)]mn (23)

is the self-energy Fourier transform. Since equations (5), (20)
and (22) could not be solved exactly, here we solve these
equations in the CPA formalism. In the CPA method, multiple
scattering is neglected and all sites are replaced by effective

Figure 10. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states of (a) A3,0,
(b) B2,0, (d) B4,0 subsites of site 0 and (c) the B3,0 subsite of site 1,
where a diatomic gas molecule is adsorbed by the A2,0 subsite of site
0 and δ′ = −0.25t . The hopping deviations and on-site energies are
chosen to be δ1 = +0.02t , δ2 = +0.035t , ε1 = −0.655t and
ε2 = +0.0, respectively.

sites, except one which is denoted as the impurity; hence,
the self-energy is diagonal, 
(l, l ′, E) = 
(E)δll′ . So
equations (5), (20), (22) and (21) at the impurity site are
reduced to

Gimp(i, i, E) = G(i, i, E)+ G(i, i, E)[Vii −
(E)]
× Gimp(i, i, E), (24)

8
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Figure 11. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states of (a) A4,0,
(b) B3,0, (c) B4,0, (d) B5,0 subsites of site 0, where a diatomic gas
molecule is adsorbed by the A2,0 subsite of site 0 and δ′ = −0.25t .
The hopping deviations and on-site energies are chosen to be
δ1 = +0.02t , δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0,
respectively.

[G(i, i, E)]mn = 2

Nx (N + 1)

×
∑
kx p

sin

(
pπ

N + 1
M

)
sin

(
pπ

N + 1
N

)

× [EI − εkx p −
(kx , p, E)]−1
mn (25)

and
〈Vll Gimp(l, j, E)〉 = 
(l, l, E)G(l, j, E) (26)

Figure 12. Comparison of the local density of states of a pure
8-AGNR with respect to the local density of states of (a) A5,0,
(b) B4,0, (d) B6,0 subsites of site 0 and (c) the B5,0 subsite of site 1,
where a diatomic gas molecule is adsorbed by the A2,0 subsite of site
0 and δ′ = −0.25t . The hopping deviations and on-site energies are
chosen to be δ1 = +0.02t , δ2 = +0.035t , ε1 = −0.655t and
ε2 = +0.0, respectively.

respectively. Equations (24)–(26) constitute a complete set
of equations that should be solved self-consistently to obtain
G(i, j, E) and 
(E). So, we can obtain the average density
of states N(E) in terms of the average Green function as

N
An,n An,n

(E) = − 1
π

Im G
An,n An,n

(i, i, E). Figure 13 shows the
effect of the diatomic adsorbed gas molecule concentration
c on the average density of states of the A3,0 subsite for

9
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Figure 13. The density of states of gas adsorbed 8-AGNR for
diatomic gas molecule concentrations of 0.002, 0.006 and 0.010. The
hopping integral deviations and on-site energies are δ1 = +0.02t ,
δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0 respectively and
δ′ = −0.25t . The average density of states indicates an n-type
semiconductor, where the height and width of the donor band
increase on increasing the adsorbed gas concentration.

c = 0.002, 0.006 and 0.010. We use the hopping integral
deviations and on-site energies δ1 = +0.02t , δ2 = +0.035t ,
ε1 = −0.655t and ε2 = +0.0 obtained in the previous
section. The average density of states indicates an n-type
semiconductor behavior, where the width and height of the
donor band increase on increasing the adsorption gas molecule
concentration. The other interesting results are the differences
between the effects of gas adsorption on the average densities
of states at different subsites across the ribbon width; in
particular, gas adsorption has no effect on the average density
of states for subsites at the edges of the ribbon. These results
have been shown in figure 14.

Figure 15 shows the effect of the triatomic adsorbed gas
molecule concentration, c, on the average density of states
for the A3,0 subsite for c = 0.002, 0.006 and 0.010. We
use the hopping integral deviations and on-site energies δ1 =
+0.030t , δ2 = +0.015t , δ3 = +0.055t , δ4 = +0.035t ,
ε1 = −0.30t and ε2 = +0.0135t obtained in the previous
section. The average density of states indicates an n-type

Figure 14. The differences between the effects of gas adsorption on
the average density of states at different subsites across the ribbon
width; (a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5. The hopping
deviations and on-site energies are chosen to be δ1 = +0.02t ,
δ2 = +0.035t , ε1 = −0.655t and ε2 = +0.0 respectively and
δ′ = −0.25t .

semiconductor behavior, where the width and height of the
donor band increase on increasing the adsorption gas molecule
concentration.

Same calculations were done for the quadratomic gas
molecule adsorption with finite concentrations of 0.002, 0.006
and 0.010. Figure 16 shows the adsorbed quadratomic
molecule AGNR average density of states for the A3,0 subsite.
The hopping integral deviations and on-site energies used are
δ1 = 0.015t , δ2 = 0.010t , δ3 = 0.0325t , δ4 = 0.014t , ε1 =
−0.15t and ε2 = 0.008t , provided in the previous section.

10
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Figure 15. The density of states of a gas adsorbed 8-AGNR for
triatomic gas molecule concentrations of 0.002, 0.006 and 0.010. The
hopping integral deviations and on-site energies are δ1 = +0.030t ,
δ2 = +0.015t , δ3 = +0.055t , δ4 = +0.035t , ε1 = −0.30t and
ε2 = +0.0135t respectively and δ′ = −0.25t . The average density of
states indicates a p-type semiconductor.

We found that adsorbed molecules with finite concentrations
create a band near the AGNR conduction band; the height
and width are increased on increasing the adsorbed molecule
concentration. The average density of states indicates an n-
type semiconductor.

5. Conclusion

First, by consideration of the local density of states of pure
8-AGNR in the tight-binding model, the effects of chemical
edge modifications on electronic properties of an 8-AGNR are
studied. We did this by introducing two parameters, δ and
δ′, for the hopping integral deviations, and saw that we can
control the energy gap of the AGNR by changing the δ′; this
could be corresponding to the different edge addend atoms (H,
F etc). Then by calculation of the local density of states in the
tight-binding model, the effects of finite diatomic, triatomic
and quadratomic gas molecule adsorption on the electronic
properties of an 8-AGNR were studied. To find appropriate

Figure 16. The density of states of a gas adsorbed 8-AGNR for
quadratomic gas molecule concentrations of 0.002, 0.006 and 0.010,
respectively. The hopping integral deviations and on-site energies are
δ1 = 0.015t , δ2 = 0.010t , δ3 = 0.0325t , δ4 = 0.014t , ε1 = −0.15t
and ε2 = 0.008t respectively and δ′ = −0.25t . The average density
of states indicates an n-type semiconductor, where the height and
width of the donor band increase on increasing the adsorbed gas
concentration.

hopping integral deviations and on-site energies, first, one-
molecule adsorption is investigated. The hopping integral
deviations and on-site energies were varied until the results
obtained were the same as the experimental results. These
hopping integral deviations and on-site energies were used for
calculation of the effects of finite concentration adsorption on
8-AGNR. Since the gas molecules are adsorbed randomly by
the 8-AGNR atoms, the Green function in the equation of
motion is random and the local behavior could be different
from the whole system behavior; hence we should calculate
configurationally averaged properties. We approached this
using the coherent potential approximation formalism to take
the average over all possible adsorbed molecule configurations
where their probabilities are large enough. We found that
the adsorbed gas molecule could produce states inside the
semiconducting energy gap of the 8-AGNR. When these
states are near the 8-AGNR conduction band, an n-type
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semiconductor is obtained, while when these states are located
near the valence band, a p-type semiconductor is obtained. Our
results show that it is possible to produce p-type and n-type
semiconductors by means of finite concentration adsorption of
gas molecules. These could be used as gas sensors.
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